Saturday, 28 November 2020

Write a concurrent LRU Cache using LinkedHashMap

 

github: https://github.com/prasune/Algorithms/tree/master/src/main/java/com/test/algorithm/cache

For handling concurrency, we will have to synchronize the methods of LinkedHashMap being used as LRU Cache.

For better performance, LRU Cache can be implemented using ReadWriteLock, ConcurrentLinkedQueue and a ConcurrentHashMap - refer the implementation

package com.test.algorithm.cache;

import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.Map;

public class LRUCacheWithLinkedHashMap<K, V> {

private final Map<K, V> internalCache;

public LRUCacheWithLinkedHashMap(int limit){
internalCache = Collections.synchronizedMap(new LinkedHashMap<K, V>(limit, 0.75f, true) {
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return size() > limit;
}
});
}

public V get(K key) {
return internalCache.get(key);
}

public void put(K key, V value) {
internalCache.put(key, value);
}

public V remove(K key) {
return internalCache.remove(key);
}

public static void main(String arg[]){
LRUCacheWithLinkedHashMap<Integer, String> lruCache = new LRUCacheWithLinkedHashMap<>(4);

lruCache.put(1, "Object1");
lruCache.put(2, "Object2");
lruCache.put(3, "Object3");
lruCache.get(1);
lruCache.put(4, "Object4");
System.out.println(lruCache);
lruCache.put(5, "Object5");
lruCache.get(3);
lruCache.put(6, "Object6");
System.out.println(lruCache);
lruCache.get(4);
lruCache.put(7, "Object7");
lruCache.put(8, "Object8");
System.out.println(lruCache);
}

@Override
public String toString() {
return "LRUCacheWithLinkedHashMap{" +
"internalCache=" + internalCache +
'}';
}
}

No comments:

Post a Comment